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A Moving Grid Finite Element Method for the
Simulation of Pattern Generation by Turing Models
on Growing Domains
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Numerical techniques for moving meshes are many and varied. In this paper
we present a novel application of a moving grid finite element method applied
to biological problems related to pattern formation where the mesh movement
is prescribed through a specific definition to mimic the growth that is observed
in nature. Through the use of a moving grid finite element technique, we pres-
ent numerical computational results illustrating how period doubling behaviour
occurs as the domain doubles in size.
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1. INTRODUCTION

It is more than half a century ago since the publication of the celebrated
paper by Turing [40] on morphogenesis i.e. the development of patterns,
shapes and structures found in nature. Turing demonstrated theoretically
that a system of two reacting and diffusing chemical concentrations
(termed morphogens) could give rise to spatial patterns in concentrations
through a chemical instability process, now known as Turing diffusion-
driven instability. The novelty of his idea was that by adding diffusion
to a system of reaction equations with a stable homogeneous steady state
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solution, the system could become unstable and evolve to a non-uniform
spatially varying steady state solution. In most physical systems, diffu-
sion is by contrast a stabilising mechanism. Typical examples of biological
applications of reaction–diffusion systems are: pattern formation in hydra
[12], animal coat markings [27], butterfly wing pigmentation patterns [28],
skeletal patterning in limb development [21] and shell pigmentation pat-
terns [22] among many others. Experimental evidence supporting the Tur-
ing instability has been found in chemistry: the chlorite-iodide-malonic
acid starch reaction (CIMA reaction) was the actual chemical reaction in
which Turing patterns were first observed [8, 11]. Lengyel and Epstein [16],
proposed a model for this reaction in which the chemical kinetics can be
determined experimentally. It is now known that morphogens exist in biol-
ogy but the whole issue of self-organisation via the Turing instability is
highly controversial [4].

One of the major criticisms of Turing reaction-diffusion theory for
pattern formation on fixed domains is the sensitivity of the patterns to ini-
tial conditions and the tight control of model parameter values needed [3].
However, by incorporating domain growth, we have shown that period
doubling of patterns can occur [20]. These patterns are insensitive to initial
conditions thereby enhancing the robustness of pattern selection.

In biological species, the role of domain growth in pattern formation
has been well illustrated in the paper by Kondo and Asai [14] who show
experimentally mode doubling in the circular patterns of the marine angel-
fish Pomacanthus as it grows. The juvenile Pomacanthus, which is less than
2 cm long, has three dorsoventral or vertical stripes; however once the fish
grows to twice this body length, new stripes emerge between the original
stripes so that the original wavelength is maintained. Painter et al. [30]
and Crampin et al. [9] carried out theoretical and computational studies
of the role of domain growth in pattern generation on regular domains
(using finite difference schemes for their numerical simulations). However,
their numerical method can not easily describe complicated and continu-
ously deforming shapes. The applicability of the finite element methods to
complicated domains is well known and there is growing realisation that
continuously changing boundaries can be readily handled by moving grid
implementations with few changes to the finite element methodology: at
least this is true when grid motion is prescribed.

We employ the moving grid finite element method in a novel way
which differs substantially from the classical moving finite element method
[2,23]. The key aspect of the moving finite element method is the assump-
tion that the solution and the nodal movement are unknown quantities
which have to be solved for simultaneously. In most cases the solution of
the partial differential equation and the nodal movement are expanded in
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a piecewise linear finite element approximation space and then the least
squares residual is minimised with respect to the time derivatives of the
two unknown quantities. This method thus yields both the solution and
the nodal movement simultaneously and directly in terms of the physi-
cal coordinates. However, the method requires regularisation to cope with
potential singularities arising from the double minimisation of the solu-
tion and the nodal movement. Also crucially important is that mesh tan-
gling is a real possibility and this could greatly reduce applicability. Our
method however differs in that nodal movement is experimentally defined.
This is a key advantage in that mesh tangling is therefore not an issue in
our numerical computations. The mesh movement and the time discretisa-
tion of the PDE are intrinsically coupled. The boundary is deformed con-
tinuously in some prescribed fashion (in most cases to mimic biological
experiments) and the internal mesh movement is achieved either via a spe-
cific definition or in some cases, where no such definition exists, via the
spring analogy described by Blom [5].

In Sec. 2 we illustrate one derivation of reaction–diffusion systems on
a continuously deforming domain. The model equations derived are solved
via a moving grid finite element method by use of piecewise linear basis
functions in two dimensions as shown in Sec. 3. In Sec. 4 we illustrate the
application of the numerical method by computing numerical results on
a continuously deforming square domain. Through a specific example we
show computationally how period doubling of spots occurs with domain
growth. Finally in Sec. 5 we present conclusions and some future direc-
tions in this research.

2. DERIVATION OF REACTION–DIFFUSION EQUATIONS
ON A CONTINUOUSLY DEFORMING DOMAIN

Let Ω(t) ⊂ R
2 be a simply connected bounded growing domain at

time t � 0 with its growing boundary ∂Ω(t). Also let u (x(t), y(t), t) and
v (x(t), y(t), t) be the concentrations of two chemicals, known as morpho-
gens, at position (x(t), y(t)) ∈ Ω(t) ⊂ R

2 at time t � 0.1 Consider chemical
concentration u (similarly for v), say. According to the law of mass
balance, at time t �0, the rate of change of the chemical u in Ω(t) is equal
to the sum of its net flux, F1, through the boundary ∂Ω(t) and the net pro-
duction, f1, of the chemical within the domain. Therefore by the Diver-
gence Theorem we have

d

dt

∫
Ω(t)

u (x(t), y(t), t) dΩ(t) =
∫

Ω(t)

(
−∇.F1 +f1(u, v)

)
dΩ(t), (2.1)

1This can be generalised to the case of n >2 chemicals.
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where we take into account the limits of integration which are time depen-
dent. The differential operator can not be passed through the integral
straight away since the limits of integration are functions of time. We will
refer to the grid deformation of a domain in analogy with a flowing fluid
with the aim of preserving the classical terminology [9]. The Reynolds
transport theorem states that

d

dt

∫
Ω(t)

G (x(t), y(t), t) dΩ(t) =
∫

Ω(t)

(
DG

Dt
+G(∇.a)

)
dΩ(t) (2.2)

for any scalar or vector function G(x(t), y(t), t) (see, for example [1]).
Here DG/Dt is the material derivative of G and it represents the rate of
change of G following the fluid, and a (x(t), y(t), t) is the flow velocity
field i.e.

DG

Dt
= ∂G

∂t
+a.∇G. (2.3)

Applying the Reynolds transport theorem to Eq. (2.1) we have

d

dt

∫
Ω(t)

u (x(t), y(t), t) dΩ(t) =
∫

Ω(t)

(
Du

Dt
+u (∇.a)

)
dΩ(t)

=
∫

Ω(t)

(
∂u

∂t
+a.∇u+u (∇.a)

)
dΩ(t)

=
∫

Ω(t)

(
∂u

∂t
+∇.(a u)

)
dΩ(t)

=
∫

Ω(t)

(
−∇.F1 +f1(u, v)

)
dΩ(t). (2.4)

This holds for any arbitrary domain Ω(t) and the integrands are continu-
ous so we have

∂u

∂t
+∇.(a u)=−∇.F1 +f1(u, v). (2.5)

Assuming that the chemical flux of u follows Fick’s law: F1 = −D1 ∇u,
then (2.5) becomes

∂u

∂t
+∇.(a u)=f1(u, v)+D1 ∇2u, (2.6)

and similarly for v we have

∂v

∂t
+∇.(a v)=f2(u, v)+D2 ∇2v. (2.7)
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Here, we have presented a general framework for considering domain
growth which will allow for subsequent inclusion of a detailed descrip-
tion of the properties of specific tissues. The derivation is considered as a
kinematic problem and no constitutive equations are proposed. It is sim-
ply assumed that the domain undergoes deformation and expansion result-
ing in the convection of material [10]. Combining (2.6) and (2.7) in vector
form we obtain:

∂u
∂t

+∇.(a : u)= f(u)+D∇2u, (2.8)

where a : u = (a u,a v)T . One form of non-dimensionalisation [26] leads to
the generalised reaction–diffusion system

∂u
∂t

+∇.(a : u)=γ f(u)+D∇2u in Ω(t) (2.9)

with Ω(t) representing a time-dependent domain. In some situations the
reaction term γ f(u) can be re-defined and more helpfully be written as
γ f(u)+P3(u) which leads to

∂u
∂t

+∇.(a : u)=γ f(u)+P3(u)+D∇2u in Ω(t), (2.10)

where P3(u) = (p3(u, v), q3(u, v))T with p3, q3 being cubic polynomials
[17]. We define

u =
(

u

v

)
, f =

(
f (u, v)

g(u, v)

)
, D=

(
Du 0
0 Dv

)
, and x = (x(t), y(t)) ,

where u , v are the two chemical concentrations under investigation, f , g ,

p3 , q3 are reaction kinetics. D is the diffusion matrix (Du and Dv

are constant diffusion parameters) and γ is a scale parameter [26]. In
Madzvamuse et al. [17] typical classical reaction kinetics are presented,
including the Gierer–Meinhardt [12], the Thomas [38] and the Schnaken-
berg [35] models. In this paper we use only the Schnakenberg reaction
kinetics with P3(u)=0 and

f (u, v)=a −u+u2 v,

g(u, v)=b−u2 v. (2.11)

Boundary conditions can be of Dirichlet type or of (homogeneous)
Neumann type which describe zero-flux of u (or v) out of the boundary.
Initial conditions are prescribed as small random perturbations about the
uniform homogeneous steady state of the corresponding reaction systems.
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3. THE MOVING GRID FINITE ELEMENT METHOD

Following Madzvamuse et al. [17], let w ∈ H 1(Ω(t)) be a test func-
tion. Multiplying the u component in Eq. (2.10) by w leads to the follow-
ing problem:

(ut +∇.(a u),w)=γ (f,w)+Du (∇2u,w) (3.1)

for all w ∈H 1(Ω(t)) where

(u,w)=
∫ ∫

Ω(t)

uw dx (3.2)

is the L2-inner product. Assuming that homogeneous Neumann boundary
conditions are used, by Green’s Theorem equation (3.1) reduces to finding
u∈H 1(Ω(t)) such that

(ut +∇.(a u),w)=γ (f,w)−Du (∇u,∇w) (3.3)

for all w ∈H 1(Ω(t)). Here

a = (ẋ , ẏ)T (3.4)

represents the grid velocity. Therefore, we seek to find a solution u ∈
H 1(Ω(t)) such that

(ut ,w)+ (
ẋ ux + ẏ uy,w

)+ (u∇.a,w)=γ (f,w)−Du (∇u,∇w) (3.5)

for all w ∈ H 1(Ω(t)). Let uh be a moving grid finite element approxima-
tion to u defined by

uh =
n∑

j=1

Uj(t) φj (x, ξ(t)), (3.6)

where ξ(t) represents the finite element moving grid. Then the moving grid
finite element approximation seeks to find uh ∈V h ⊂H 1 such that

(
uh

t ,w
)

+
(
ẋ uh

x + ẏ uh
y,w

)
+

(
uh ∇.a,w

)
=γ (f,w)−Du

(
∇uh,∇w

)
(3.7)

for all w∈V h ⊂H 1(Ω(t)). The time-derivative of (3.6) can be expressed in
two dimensions as [7,13]

∂uh

∂t
=

n∑
j=1

(
dUj

dt
− ẋj uh

x − ẏj uh
y

)
φj (x, ξ(t)). (3.8)
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Without loss of generality, taking the test function to be w = φi , i =
1, . . . , n, the above equation can be written as follows:

n∑
j=1

(
dUj

dt

(
φj ,φi

)−
(
ẋj uh

x φj + ẏj uh
y φj , φi

)
+

(
ẋj uh

x + ẏj uh
y, φi

)

+∇.a
(
φj ,φi

)
Uj

)
=−Du

n∑
j=1

(∇φj ,∇φi

)+γ (f,φi) (3.9)

for all i =1,2, . . . , n. Similarly for vh we have

n∑
j=1

(
dVj

dt

(
φj ,φi

)−
(
ẋj vh

x φj + ẏj vh
y φj , φi

)
+

(
ẋj vh

x + ẏj vh
y , φi

)

+∇.a
(
φj ,φi

)
Vj

)
=−Dv

n∑
j=1

(∇φj ,∇φi

)+γ (g,φi) . (3.10)

Integrating over the whole domain gives rise to the following system of
nonlinear ordinary differential equations:

M U̇−(P +Q)U + (
Ūx + Ūy

)
U +∇.a M U =−Du K U +γ F(U,V), (3.11)

M V̇−(P +Q)V + (
V̄x + V̄y

)
V +∇.a M V =−Dv K V +γ G(U,V), (3.12)

where M is the mass matrix, K is the stiffness matrix, and P , Q, Ūx ,
Ūy, V̄x , V̄y are resultant matrices from domain growth. The terms F(U,V)

and G(U,V) represent matrices derived from the nonlinear reaction kinet-
ics. For example, for the Schnakenberg reaction kinetics (2.11) we have the
following:

F(U,V)=a F −M U +C(U,V), (3.13)

G(U,V)=b F −C(U,U)V, (3.14)

where M is the mass matrix as before, F is the force vector and C(U,V)

is the linearised matrix from the u2 v term. Specific details of the integra-
tions that give rise to these matrices can be found in Madzvamuse [20].

In all our simulations ∇.a is calculated from plausible growth func-
tions or those derived from biological experiments and therefore is a
known quantity (for example, see Sec. 4 for specific details). Finally we
can re-write the system of nonlinear ordinary differential equations in
compact form as follows:

M U̇ +Du K U = (
P +Q− Ūx − Ūy −∇.a M

)
U +γ F(U,V), (3.15)
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M V̇ +Dv K V = (
P +Q− V̄x − V̄y −∇.a M

)
V +γ G(U,V). (3.16)

3.1. Time-stepping

We have developed a variety of time-stepping methods to cater for
different types of solutions to Eqs. (3.15) and (3.16). If the solutions
are highly oscillatory with steep gradients, it becomes necessary to use
higher order time-stepping schemes [32]. However for solutions with low
frequencies such as those in this paper we implement a Picard Iteration
method coupled with an Implicit Backward Euler finite difference scheme.
This method allows us to take bigger time-steps than even those required
for higher order time-stepping schemes. All the results in this paper are
obtained by using this method. Also in all our simulations we use a fixed
constant time step ∆t . From a biological point of view, growth occurs on
a very slow time-scale and hence it is plausible to assume that the differ-
ence between the transient solutions between two successive computational
grids is negligible. This makes it possible to linearise the nonlinear terms
in the reaction kinetics by assuming that the term U2, for example, can be
written as a product of Um Um+1 where Um is the known solution calcu-
lated from the previous time m∆t . At each time-step we do not need to
apply a fixed iteration but simply use a single fixed iteration step. In previ-
ous work we have found this to be sufficient [17]. Once linearised the set
of linear algebraic equations obtained are solved using a Preconditioned
Generalised Minimum Residual Method. Preconditioners such as ILU(0),
ILUT, ILUTP, ILUK and MILU(0) can be used with the method [33,34].
However, in all our simulations we have found that the simple ILU(0) pre-
conditioner is adequate.

4. TWO-DIMENSIONAL MOVING GRID FINITE ELEMENT
RESULTS

In this section, we show results for a given growth function. Let

x(t)= (X(0) r(t), Y (0) s(t)) (4.1)

define the grid movement where X(0) and Y (0) represent the initial x and
y coordinates at time t =0. The functions r(t) and s(t) specify the rate of
growth of the initial grid and satisfy r(0) = s(0) = 1 and r(t), s(t) > 0 for
all positive time. Differentiating

ẋ =X(0) ṙ(t), ẏ =Y (0) ṡ(t) (4.2)
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and from Eq. (4.1) we have

X(0)= x

r(t)
, Y (0)= y

s(t)
(4.3)

so that

ẋ = x

r(t)
ṙ(t), ẏ = y

s(t)
ṡ(t). (4.4)

Computing these relations with (3.4) we deduce that

∇.a = ṙ(t)

r(t)
+ ṡ(t)

s(t)
. (4.5)

Here we illustrate results for the exponential growth

r(t)= s(t)= eρ t . (4.6)

Let us consider typical two-dimensional transient solutions for the
Schnakenberg reaction kinetics with model parameter values a = 0.1,
b = 0.9, γ = 1.0, Du = 1.0 and Dv = 0.01. Figures 1–3 show results
obtained by use of the exponential growth (4.6) with growth rate ρ =10−5.
Homogeneous Neumann boundary conditions are applied to both chemi-
cal concentrations u and v. Initial conditions are prescribed as small ran-
dom perturbations around the homogeneous steady state (1.0,0.9) in the
form of:

u=1.0±10−3 cos
(

14 π x

2

)
, (4.7)

v =0.9±10−3 cos
(

14 π x

2

)
. (4.8)

The initial mesh is computed using a Delaunay mesh generator software
[25]. The mesh connectivity remains constant throughout the growth of
the domain, mesh points are not added or removed during the growth pro-
cess. All the numerical simulations are carried out on a typical mesh of
approximately 4000 elements with approximately 2000 nodes. A fixed time
step of ∆t = 0.025 is used. The results obtained are independent of the
structure of the mesh—regular and irregular meshes yield similar results.
Similar results have also been obtained with finer meshes. The transient
process settles down very quickly to being independent of initial condi-
tions providing they are small perturbations about the uniform steady
state. By incorporating growth, the final solutions obtained are robust to
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Fig. 1. Transient patterns generated by the Schnakenberg model as the unit square is grown
along the diagonal line x = y in the positive direction with growth rate (4.6). A spot pattern
re-organises evolving to the centre of the square as the domain grows. Results shown corre-
spond to the chemical concentration u: the v concentration profiles are 180-degrees out of
phase with the u profiles.
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Fig. 2. Continuation of the simulation in Fig. 1. With further growth, the spot pattern
enlarges in size and stretches along the diagonal to form a diagonal stripe pattern. This in
turn splits into two. The spots align diagonally in the same fashion and split once more
forming four spots. We observe that the spot doubled into two spots and then further dou-
bles into four spots as the domain grows so that the side length is approximately twice that
for the case when there is a single spot.
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Fig. 3. Continuation of the simulation in Fig. 2. The spots re-oriente to form a symmet-
rical pattern as the domain reaches approximately four times the size of the unit square.
Finally we observe how eight spots are going to be formed with continuous growth of the
square. Different random initial conditions have been applied without change in the numeri-
cal results, one realization of which is shown here.
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initial conditions. In this case domain growth enhances the robust selec-
tion of patterning. These results agree with theoretical results derived by
Crampin and others where they carried out studies on period doubling,
peak insertion and splitting [9]. Period doubling of spots as the domain
approximately doubles in size is observed as the domain grows. Interest-
ing is the observation that a diagonal stripe (i) is first achieved before
this splits into two spots (j). These in turn split into four spots which
re-organise into a symmetrical pattern with further growth (l) − (q). The
last picture shows how eight spots are going to be formed from four spots
as the domain continues to grow (r). Although these results are only for
illustrative purposes, from a biological point of view, period doubling of
circular patterns is an interesting phenomenon and has been observed in
the marine angelfish Pomacanthus [14].

We have illustrated results on growing two-dimensional squares, results
on other polygons such as equilateral triangles, isosceles triangles, hexago-
nal and on irregular polygonal domains are shown in Madzvamuse et al.
[17]. In all our simulations we observe numerical results that are indepen-
dent of initial conditions.

5. CONCLUSIONS AND DISCUSSIONS

Experimentally it has been observed that domain growth plays a
crucial role in the emergence of patterns in biological species (see, for
example [14]). It is convenient to couple domain growth with reaction–
diffusion systems and apply in a novel fashion the moving grid finite
element method. This method differs from the classical moving finite ele-
ment method [2,23] in that domain growth is prescribed, in most cases
to mimic biological experiments. Although we have illustrated numerical
results with a defined growth function (4.6) whereby the mesh velocity is
prescribed throughout the domain, in some biological problems growth
functions are unknown. Instead experiments provide discrete frames of
domain growth and shape changes. For this nontrivial case, it becomes
convenient to apply a spring analogy to calculate automatically the nodal
positions of the internal mesh [5].

The phenomenon we observe of spot doubling on a growing domain
is very similar to the process of self-replicating spots observed in compu-
tations on a fixed domain [31] and later experimentally [15].

We have found that in all our simulations transient solution on con-
tinuously growing domains are independent of initial conditions. In this
paper we have shown a novel application of the moving grid finite element
technique to solving a system of reaction-diffusion equations on a contin-
uously growing domain. Intriguingly, we find that by using a finite differ-
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ence approach to this problem the mode doubling transitions occur in a
different sequence (Madzvamuse, in preparation). We believe that this may
occur because the underlying model equations exhibit multiple solutions.
This warrants further numerical and analytic investigation.

As part of this research we have developed a computer software pack-
age that can solve generalised Turing reaction–diffusion systems on con-
tinuously deforming one- and two-dimensional domains. This software has
been applied to the study of growth patterns in bivalve ligaments [18,39],
and on fixed domains to color pattern formation in the butterfly wing
Papilio dardanus [19,29,36]. We are currently computing patterns on grow-
ing imginal wing discs of butterflies. The software is freely available and
downloadable from: http://www.auburn.edu/˜ madzva1.
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